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S1 Proofs

The proofs of Propositions 1 and 2 are immediate, and are omitted.

Proof of Proposition 3: For each i = 1, . . . , N , dividing both sides of (5) by exp(xTi β +

dTi ai) and then taking the natural logarithm of both sides yields

−dTi ai = log

{∫
exp(dTi u)fU(u)du

}
.

The integral in this equation is equal to MU(di). Thus, multiplying both sides by −1, we

obtain dTi ai = − log{MU(di)}, as required.

Proof of Corollary 1: This result follows immediately from Proposition 3. For each i =

1, . . . , N , if dTi ai exists, then dTi ai = − log{MU(di)}, and MU(di) must exist. Conversely,

if MU(di) exists, then dTi ai = − log{MU(di)} also exists because MU(di) is strictly positive

and thus lies in the domain of log(·).

Proof of Corollary 2: For this model, di = 1 for all i = 1, . . . , N and MU(t) = exp(σ2t2/2).

Thus, ai = − log{MU(di)} = − log{exp(σ2/2)} = −σ2/2 for all i = 1, . . . , N , as required.

Proof of Theorem 1: To simplify notation, we suppress the subscript i. For any choice
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of fU,

−∞ < ` = `

∫
fU(u)du ≤

∫
h(xTβ + dTu + dTa)fU(u)du

≤ u

∫
fU(u)du = u <∞.

Consequently, the integral
∫
h(xTβ+dTu+dTa)fU(u)du exists. Further,

∫
h(xTβ+dTu+

dTa)fU(u)du is a continuous function of dTa and, provided d 6= 0, the following two limits

hold:

lim
dT a→−∞

∫
h(xTβ + dTu + dTa)fU(u)du = `,

lim
dT a→∞

∫
h(xTβ + dgTu + dTa)fU(u)du = u.

Since ` ≤ h(xTβ) ≤ u, continuity implies that for any value of h(xTβ) there exists an

adjustment dTa such that (4) holds. When d = 0, (4) trivially holds because h(xTβ +

dTu + dTa) = h(xTβ).

Proof of Proposition 4: Let Ui ∼ Nq(0,Σ) and ε ∼ N(0, 1), and define W = ε−dTi Ui so

that W ∼ N(0, 1 + dTi Σdi). Then,∫
Φ(xTi β + dTi u + dTi ai)fU(u)du =

∫
P(ε ≤ xTi β + dTi u + dTi ai)fU(u)du

= P(ε ≤ xTi β + dTi Ui + dTi ai) = P(ε− dTi Ui ≤ xTi β + dTi ai)

= P(W ≤ xTi β + dTi ai) = Φ

{
xTi β + dTi ai

(1 + dTi Σdi)1/2

}
.

Consequently,

Φ(xTi β) =

∫
Φ(xTi β + dTi u + dTi ai)fU(u)du = Φ

{
xTi β + dTi ai

(1 + dTi Σdi)1/2

}
.

Applying Φ−1(·) to both sides yields xTi β = (xTi β + dTi ai)(1 + dTi Σdi)
−1/2. Solving for dTi ai

we obtain dTi ai =
(
(1 + dTi Σdi)

1/2 − 1
)
xTi β, as required.

Proof of Proposition 5: We show the limit for xTi β → −∞; the limit for xTi β → ∞

follows from symmetry. Let κ = xTi β, a = dTi ai, and τ 2 = dTi Σdi. Then from Proposition 7
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it follows that,

eκ

1 + eκ
=

∫
Rq

eκ+u+a

1 + eκ+u+a
fU(u)du =

∫
R

eκ+v+a

1 + eκ+v+a
1√

2πτ 2
exp

(
− 1

2τ 2
v2
)
dv.

Dividing by exp(κ) on both sides and taking the limit as κ→ −∞ we obtain

1 = ea
∫
R
ev

1√
2πτ 2

exp

(
− 1

2τ 2
v2
)
dv.

Recognizing the integral on the right-hand side of this equation as the moment generating

function of a N(0, τ 2) random variable evaluated with argument t = 1, we obtain exp(−a) =

exp(τ 2/2), which implies that a = −τ 2/2. Thus, dTi ai = −1
2
dTi Σdi for each i = 1, . . . , N , as

required.

Proof of Proposition 6: Expanding the square in (8) and then rearranging terms yields

(dTi ai)
2 + 2(xTi β)(dTi ai) + Var(dTi Ui) = 0.

Application of the quadratic formula then leads to

dTi ai =
1

2
[−2xTi β ± {(2xTi β)2 − 4Var(dTi Ui)}1/2]

= −xTi β ± {(xTi β)2 − Var(dTi Ui)}1/2.

Thus, subject to the constraint xTi β + dTi ai ≥ 0, we have

dTi ai = −xTi β + {(xTi β)2 − Var(dTi Ui)}1/2.

Proof of Proposition 7: The marginal likelihood for each Yi, i = 1, . . . , N , is

fY (Yi) =

∫
fY |U(Yi|Ui = u)fU(u)du

=

∫
E[Yi|Ui = u]Yi(1− E[Yi|Ui = u])1−YifU(u)du

=

∫
h(xTi β + u+ ai)

Yi
(
1− h(xTi β + u+ ai)

)1−YifU(u)du.

Because the model is marginally interpretable, if Yi = 1 we have

fY (Yi) =

∫
h(xTi β + u+ ai)fU(u)du = h(xTi β),
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whereas if Yi = 0 we have

fY (Yi) =

∫ (
1− h(xTi β + u+ ai)

)
fU(u)du = 1− h(xTi β).

Since Yi ∈ {0, 1}, we can therefore write

fY (Yi) = h(xTi β)Yi
(
1− h(xTi β)

)1−Yi ,
and fY is completely independent of σ2, as required.

Proof of Proposition 8: Suppose for each i = 1, . . . , N we have Ui ∼ Nq(0,Σ) and write

Ui = Σ
1
2 Zi, where Σ

1
2 is a square root matrix for Σ and Zi ∼ Nq(0, Iq). We can define

a random variable V = dTΣ
1
2 Z such that V ∼ N(0, τ 2), where τ 2 = dTΣd. It is also

possible to define q − 1 additional random variables W = (W1, . . . ,Wq−1)
T that span the

orthogonal complement of V relative to Rq such that W follows a (q−1)-dimensional Normal

distribution with density fW(·). Given such a V and W, we have∫
Rq
h(κ+ dTu + a)

( 1

2π

) q
2 |Σ|−1/2 exp

(
− 1

2
uTΣ−1u

)
du

=

∫
Rq
h(κ+ dTΣ1/2z + a)

( 1

2π

) q
2

exp
(
− 1

2
zTz
)
dz.

=

∫
Rq
h(κ+ v + a)

1√
2πτ 2

exp

(
− 1

2τ 2
v2
)
fW(w)dwdv

=

∫
R
h(κ+ v + a)

1√
2πτ 2

exp

(
− 1

2τ 2
v2
)
dv

∫
Rq−1

fW(w)dw

=

∫
R
h(κ+ v + a)

1√
2πτ 2

exp

(
− 1

2τ 2
v2
)
dv.

S2 Efficient and accurate evaluation of logistic-normal

integrals

Monahan and Stefanski (1992) approximate the inverse logit function h(z) with a weighted

mixture of normals

h∗k(z) =
k∑
i=1

pk,iΦ(zsk,i),
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where the weights pk,i and sk,i are chosen to minimize the maximum approximation error

over all values of z. This leads to to the integral approximation∫
h(z)

1

σ
φ

(
z − µ
σ

)
dz ≈

∫
h∗k(z)

1

σ
φ
(
z−µ
σ

)
dz =

k∑
i=1

pk,iΦ

{
µsk,i

(1 + σ2s2k,i)
1/2

}
, (S1)

which is within 2.1 × 10−9 of the true value of the integral for all values of κ and σ with

k = 8 mixture weights. Decreasing k can improve computational efficiency, but the increase

in speed from using fewer weights is small relative to the corresponding loss of accuracy. We

therefore recommend using k = 8.

As we write in the main article, our algorithm for evaluating the logistic-normal integral

exploits a recursive formula developed by Pirjol (2013) that provides an exact solution to the

logistic-normal integral on a specifically defined, evenly spaced grid: the integral for ϕ(µ, σ2)

given by (12) in the main article satisfies the recursion given by (13), with initial condition

ϕ(0, σ2) = 1/2. Combining the recursion with the above approximation of Monahan and

Stefanski (1992), to approximate the logistic-normal integral 1 − ϕ(µ, σ2) for µ > 0, where

ϕ(·, ·) is defined as in (12), we first write µ = µ∗ + tσ2, where µ∗ ∈ [0, σ2) and t is a

nonnegative integer. We then approximate 1 − ϕ(µ∗, σ2) using (S1) with k = 8 mixture

weights and apply the recursion (13) t times to obtain an approximation for 1 − ϕ(µ, σ2).

When µ < 0, the integral of interest is 1− ϕ(µ, σ2) = ϕ(|µ|, σ2), and the approximation can

still be handled as if the first argument of ϕ(·, ·) were positive.

Denoting our approximation of ϕ(µ, σ2) as ϕ̃(µ, σ2), we define the error associated with this

approximation as

ε(µ, σ2) = ϕ(µ, σ2)− ϕ̃(µ, σ2).

Pirjol (2013) showed that the error ε(µ, σ2) is bounded by

|ε(µ, σ2)| ≤ exp

(
− 1

2σ2
µ2 +

1

8
σ2

)
sup

z∈[0,σ2)

|ε(z, σ2)|,

which means that ϕ̃(µ, σ2) is generally more accurate for larger values of µ and that the error

associated with ϕ̃(µ, σ2) is never worse than the maximum error of the Monahan-Stefanski

approximation (S1) over [0, σ2).
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To assess the speed and accuracy of our hybrid approach we compared it to both 30-point

Gauss-Hermite quadrature and to a direct application of (S1). Specifically, for each of the

80 values of σ in the set {0.05, 0.10, . . . , 4.00} we evaluated the integral 1−ϕ(µ, σ2) for 1,000

values of µ in each of the four intervals [0, σ2], [σ2, 2σ2], [2σ2, 3σ2], and [3σ2, 4σ2] using the

hybrid approach, the Monahan-Stefanski approximation, 30-point Gauss-Hermite quadra-

ture, and 1,000-point Gauss-Hermite quadrature. This required 4,000 integral evaluations

for each of the 80 values of σ and each method. These evaluations were completed on a Dual

Quad Core Xeon computer with 32 GB of RAM. To ensure a fair comparison of speed, all

four approaches were implemented using the Rcpp package in R (R Core Team, 2018; Ed-

delbuettel and François, 2011; Eddelbuettel, 2013). Gauss-Hermite quadrature with 1,000

quadrature points was treated as the gold standard to which the other three methods were

compared to. For each method and each value of σ we computed the maximum “error”

relative to 1,000-point quadrature within each of the four intervals for µ. Figure S1 summa-

rizes a proportion of the results. Although 30-point Gauss-Hermite quadrature is the most

accurate for small values of σ, the hybrid approach is the most accurate in the majority of

cases. Notably, our hybrid approach, combining Pirjol (2013) and Monahan and Stefanski

(1992), clearly outperforms a direct application of Monahan and Stefanski (1992).

The 320,000 integral evaluations required for the accuracy assessment took 2.1 seconds for

the hybrid approach, 2.1 seconds for the Monahan-Stefanski approximation, 2.2 seconds

for 30-point Gauss-Hermite, and 19.4 seconds for 1,000-point Gauss-Hermite. Thus, the

computational speed of the hybrid approach is comparable to Monahan-Stefanski and slightly

better than 30-point Gauss-Hermite. Since 1,000-point quadrature is considerably slower

than the other three methods, we conclude that our hybrid approach is the most efficient,

offering the best tradeoff between accuracy and speed among the methods.
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Figure S1: Maximum error relative to 1,000-point Gauss-Hermite quadrature for various

approximations of the logistic-normal integral with µ in [σ2, 2σ2] and [2σ2, 3σ2]; machine

accuracy is approximately 10−16, accounting for the floor in the plots.

S3 Estimating the parameters of a marginally inter-

pretable model: a simulation study

In this section we investigate how well we can recover the model parameters in a marginally

interpretable binomial model. For a sample of size n, suppose that

Yi|β, Ui
ind∼ Binomial{mi,E(pi|β, Ui)}, i = 1, . . . , n.

Letting h denote the inverse logit function we model the conditional mean as

E(pi|β, Ui) = h(β0 + β1xi + Ui + ai), i = 1, . . . , n,

where β = (β0, β1)
T is the vector of fixed effects parameters and ai, defined by equation

(6), is the adjustment that ensures the model is marginally interpretable. Throughout the

simulation study we calculate the adjustment using the method proposed in Section 5.2. To

complete the model we assume that the set of random effects {Ui : i = 1, . . . , n} consists

of independent N(0, σ2) random variables. In addition, we set the covariate values to xi =

(i− 1)/n, i = 1, . . . , n and fix each mi = m, for some common number of Bernoulli trials m.
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We pick the same values of β as the illustration in Section 4.1: β0 = −3, β1 = 5. We set

σ = 0.5 or σ = 1 in our simulations. As shown in Section 4.1 these values of β and σ induce

different adjustments ai for different xi values. We fix the sample size at n = 50, but vary

m with values of 1, 5, 10, 25 and 50.

For each combination of values, we simulate 500 realizations from our marginally inter-

pretable model and estimate the parameters using maximum likelihood (ML). We evaluate

the integrals in the likelihood function using Gauss-Hermite quadrature, as implemented

by the statmod R package. To understand the effect of ignoring the adjustment, we also

compare to the case when we fit a traditional GLMM model that does not include an ad-

justment. (The conventional model still requires us to evaluate the likelihood function using

quadrature methods.)

Figure S2 displays the bias, standard deviation (SD), and root mean square error (RMSE) of

ML estimates of β0 (first row) and β1 (second row) as the value of m increases when σ = 0.5.

In each panel, the black lines show the summary of the ML estimates for the marginally

interpretable GLMM, and the gray lines show summary values of the ML estimates for the

conventional GLMM. The vertical lines denote 95% bootstrap confidence intervals for each

quantity. Figure S3 summarizes the ML estimates when σ = 1.

Figure S2 demonstrates for the marginally interpretable GLMM that as the number of trials

at each covariate value, m, increases, the biases of both the ML estimates of β0 and β1

approach zero. In addition the SD and RMSE of both ML estimates also decrease as m

increases. Figure S2 shows that the patterns we see for the bias, SD, and RMSE for the

σ = 0.5 case are the same when σ = 1. This demonstrates that our ML estimates are able to

efficiently recover the true values of the β fixed effect parameters, regardless of the values of

σ and m. (Naturally, estimating these parameters is harder when we have fewer trials.) This

also confirms that our method to calculate the adjustments does not introduce significant

bias in estimation.

Comparing the ML estimates of the marginally interpretable GLMM to the ML estimates
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Figure S2: When σ = 0.5, the bias, SD, and RMSE of ML estimates for a marginally

interpretable simple linear logistic GLMM (black lines) and a conventional simple linear

logistic GLMM (gray lines). The vertical lines denote 95% bootstrap confidence intervals for

each quantity.

of the conventional GLMM, we see significant non-zero biases in the conventional GLMM,

especially when m is small and σ is larger. This is due in part to the true model being

the marginally interpretable model in this case, but also due to the Kim Paradox where the

estimation of β and σ is confounded for smaller values of m. In addition, the SD and RMSE

of the ML estimates for the conventional model are higher than those for the marginally

interpretable model.

We conclude that using the marginally interpretable model leads to more robust inferences

without compromising our ability to carry out inference on the model parameters.
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Figure S3: As Figure S2, but with σ = 1.

S4 Markov chain Monte Carlo algorithm for the rat

teratology data

In Section 6, we sample from the posterior distribution of the unknown parameters in our

model for the rat teratology data using an MCMC algorithm. Further details are provided

below.

We sample from the target posterior via MCMC by iteratively updating the parameter vector

θ = (β,α,U)T , where β is the vector of fixed effects parameters, α = (σ2
1, σ

2
2)T includes the

variance components, and U = (U1,1, . . . , U2,16)
T includes the 32 latent variables associated

with the random effect for litter. Our target posterior is

π(β,α,U|Y) ∝ fY|θ(Y|β,α,U)fU(U|σ2
1, σ

2
2)πβ0(β0)πβ1(β1)πσ1(σ

2
1)πσ2(σ

2
2),
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where fY|θ(Y|β,α,U) is a product of binomial densities given by

fY|θ(Y|β,α,U) =
2∏
i=1

16∏
j=1

fY |θ(Yij|β, σ2
i , Uij)

=
2∏
i=1

16∏
j=1

(
mij

Yij

)
(β0 + β1xi + Uij + ai)

Yij(1− β0 − β1xi − Uij − ai)(mij−Yij),

fU(U|σ2
1, σ

2
2) is a product of normal densities given by

fU(U|σ2
1, σ

2
2) =

2∏
i=1

16∏
j=1

fU(Uij|σ2
i ) =

2∏
i=1

16∏
j=1

1√
2πσ2

i

e
− 1

2σ2
i

U2
ij
,

and πβ0(·), πβ1(·), πσ1(·), and πσ2(·) are the prior densities for β0, β1, σ
2
1, and σ2

2, respectively.

Note that we have assumed, a priori, that these parameters are independent of one another.

To sample from the target posterior we use Metropolis steps to iteratively produce draws

from the full conditional distributions of the unknown parameters. The conditional posterior

of β given α, U, and Y is proportional to

fY|θ(Y|β,α,U)πβ0(β0)πβ1(β1),

and the conditional posterior of α = (σ2
1, σ

2
2)T given β, U, and Y is proportional to

fY|θ(Y|β,α,U)fU(U|σ2
1, σ

2
2)πσ1(σ

2
1)πσ2(σ

2
2).

Further, for each i = 1, 2 and j = 1, . . . , 16, the conditional posterior of Uij given β, α,

U−(ij), and Y is proportional to

fY |θ(Yij|β, σ2
i , Uij)fU(Uij|σ2

i ),

where U−(ij) represents all elements of U except Uij. Since the Uij are conditionally in-

dependent, U−(ij) does not enter this expression for the full conditional of Uij. These full

conditional distributions lead naturally to an MCMC algorithm that iteratively performs the

following steps:
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MCMC Algorithm

1. Propose βprop given α(t) and U(t). With probability

min

(
1,
fY|θ(Y|βprop,α(t),U(t))πβ0(β

prop
0 )πβ1(β

prop
1 )

fY|θ(Y|β(t),α(t),U(t))πβ0(β
(t)
0 )πβ1(β

(t)
1 )

)
,

set β(t+1) = βprop. Otherwise, set β(t+1) = β(t);

2. Propose αprop given β(t+1)and U(t). With probability

min

(
1,
fY|θ(Y|β(t+1),αprop,U(t))fU(U(t)|σ2(prop)1 , σ

2(prop)
2 )πσ1(σ

2(prop)
1 )πσ2(σ

2(prop)
2 )

fY|θ(Y|β(t+1),α(t),U(t))fU(U(t)|σ2(t)1 , σ
2(t)
2 )πσ1(σ

2(t)
1 )πσ2(σ

2(t)
2 )

)
,

set α(t+1) = αprop. Otherwise, set α(t+1) = α(t);

3. For i = 1, 2 and j = 1, . . . , 16, propose Uprop
ij given β(t+1) and α(t+1). With probability

min

(
1,
fY |θ(Yij|β(t+1), σ

2(t+1)
i , Uprop

ij )fU(Uprop
ij |σ

2(t+1)
i )

fY |θ(Yij|β(t+1), σ
2(t+1)
i , U

(t)
ij )fU(U

(t)
ij |σ

2(t+1)
i )

)
.

set U
(t+1)
ij = Uprop

ij . Otherwise, set U
(t+1)
ij = U

(t)
ij .

At each stage of the MCMC algorithm we propose new values for the parameters given their

current values. The proposed values are random draws from the following distributions:

βprop0 ∼ N(β
(t)
0 , 0.0625); βprop1 ∼ N(β

(t)
1 , 0.0625)

log(σ
2(prop)
1 ) ∼ N{log(σ

2(t)
1 ), 0.25}; log(σ

2(prop)
2 ) ∼ N{log(σ

2(t)
2 ), 0.25};

Uprop
ij ∼ N(U

(t)
ij , 1).
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S5 Epileptic seizures

Our second example comes from a clinical trial of 59 epileptics conducted by Leppik et al.

(1987). Each subject received either a placebo or the drug progabide and then made four

successive follow-up visits to the clinic during which they reported the number of partial

seizures they had suffered in the two-week period immediately preceding the visit. We

denote these reported counts by Yij, where i = 1, . . . , 59 indexes the subjects and j =

1, 2, 3, 4 indexes the visits. Thall and Vail (1990) used GEE to fit a marginal model to

these data. They included as predictors the logarithm of one-fourth of the baseline count of

partial seizures suffered by each patient in the eight-week period prior to treatment (denoted

BASEi), a treatment indicator (1 if progabide, 0 if placebo, denoted TRTi), the interaction

between BASEi and TRTi, the logarithm of the subject’s age in years (denoted AGEi), and

a fourth-visit indicator (1 for the subject’s fourth post-treatment visit, 0 otherwise, denoted

VISIT4j). Breslow and Clayton (1993) and Gamerman (1997) fit a GLMM with the same

fixed effects and also two levels of random effects. Their model has the form

E(Yij|β, γi, δij)=exp
(
β0+β1×(BASEi)+β2×(TRTi)+β3×(BASEi∗TRTi)+

β4×(AGEi)+β5×(VISIT4j)+γi+δij
)
,

(S2)

where the γi
ind∼ N(0, σ2) are random subject effects, the δij

ind∼ N(0, τ 2) are random effects

for visit within subject, and β = (β0, β1, . . . , β5)
T is the vector of fixed effects parameters.

Further, conditional on the random effects γi and δij, the reported seizure counts are assumed

to be independent observations from a Poisson{E(Yij|β, γi, δij)}.

We adopt a Bayesian approach and sample from a mixed model analogous to (S2), but

include an adjustment to ensure that the model is marginally interpretable. In light of

Section 3.2, the adjustment is simply aij = −σ2/2 − τ 2/2 for all i and j. As with the

rats teratology example presented in Section 6 of the main document, to clearly distinguish

between different parameterizations, let β∗ denote the marginal parameters in a marginally

interpretable GLMM and β denote the cluster-specific parameters in a conventional GLMM.

We also code the treatment effect as TRTi = 1 for progabide and as TRTi = −1 for placebo
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to ensure that the two treatment groups are on the same footing in terms of variance. We

assume, a priori, that β∗, σ2, and τ 2 are independent of one another, and place N6(0, 4I6),

N(−1, 2), and N(−1, 2) prior distributions on β∗, log(σ2), and log(τ 2), respectively. The

priors on the variance components reflect our belief that there is little subject-to-subject

and visit-to-visit variation, whereas the priors on the fixed effects parameters are meant

to be noninformative while also not putting too much mass on unreasonably large values

for the expected seizure count. To sample from our target posterior using MCMC, the

vector of parameters we must update is θ = (β∗,α,γ, δ)T , where β∗ is the vector of fixed

effects parameters, α = (σ2, τ 2)T includes the parameters characterizing the random effects

distribution, γ = (γ1, . . . , γ59)
T includes the 59 latent variables associated with the subject

random effect, and δ = (δ1,1, . . . , δ59,4)
T includes the 236 latent variables associated with the

visit random effect. Due to the presence of 295 latent variables in this model, proposals for

β∗ are rarely accepted when we use a basic MCMC algorithm that employs Metropolis steps

to update the parameters in blocks.

To address the problem with slow mixing, we simultaneously propose γprop and δprop to be

consistent with each proposed βprop as described in Section 5.3. Specifically, for each βprop

we also propose the following γpropi and δpropij for each i = 1, . . . , 59 and j = 1, 2, 3, 4:

γpropi = γ
(t)
i + xTi,1(β

(t) − βprop), (S3)

δpropi,4 = δ
(t)
i,4 + (xTi,4 − xTi,1)(β

(t) − βprop), and δpropij = δ
(t)
ij for j = 1, 2, 3. (S4)

We then choose to accept or reject βprop, γprop, and δprop collectively and set β(t+1), γ ′, and

δ′ accordingly. The intermediate states γ ′ and δ′ are used in place of γ(t) and δ(t) until γ

and δ are formally updated. Proposing random effects to be consistent with the fixed effects

in this manner increases the acceptance rate for βprop from 12.9% to 50.7%. Using this

improved proposal scheme also decreases the integrated autocorrelation time for β∗1 , which

represents the effect for the baseline count and has the highest such value among the six fixed

effects parameters, from 642.7 to 161.9. We carried out our modified MCMC algorithm both

for the marginally interpretable model and the conventional GLMM. We ran each chain for
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Table S1: Posterior means of the model parameters for the epileptic seizures data with

corresponding posterior standard deviations in parentheses.

Parameter Marginally Interpretable GLMM Conventional GLMM

β∗0 , β0 -1.15 (1.09) -1.29 (1.08)

β∗1 , β1 1.04 (0.10) 1.04 (0.11)

β∗2 , β2 -0.45 (0.21) -0.45 (0.21)

β∗3 , β3 0.16 (0.11) 0.16 (0.10)

β∗4 , β4 0.33 (0.31) 0.32 (0.31)

β∗5 , β5 -0.10 (0.09) -0.10 (0.09)

σ 0.50 (0.07) 0.50 (0.07)

τ 0.37 (0.04) 0.37 (0.04)

2,100,000 steps, discarding the first 100,000 steps as burn-in and retaining every 200th step

thereafter to obtain a final sample of 10,000 draws from the posterior distribution for each

model.

Table S1 displays posterior means and standard deviations for the parameters in both the

marginally interpretable model and the conventional GLMM. With the exception of the

intercept (β∗0 or β0), the two sets of parameter estimates are virtually identical. Breslow

and Clayton (1993) noted that the slope parameters in this model have both a marginal and

conditional interpretation while Ritz and Spiegelman (2004) stated that this will generally

be the case for a model with a log link and a random intercept that is independent of the

covariates in the model. The intercept for the marginally interpretable model is greater than

the intercept for the conventional GLMM due to the tendency of the convex inverse link

function to pull the marginal mean up.

With the marginally interpretable GLMM, we can estimate the marginal mean for the entire

population by computing exp(xTβ∗) and can make a prediction for a new observation on an

individual in the sample by computing exp(xTβ∗ + γ + δ + dTa). A marginal model fit via

GEE should yield fixed effects parameter estimates that are similar to the posterior means
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reported in Table S1 for the marginally interpretable model, but obtaining subject-specific

predictions would be much more difficult with a purely marginal model.

Similarly, the conventional GLMM should yield individual-level predictions identical to those

of the marginally interpretable model, but estimating the marginal mean using the conven-

tional GLMM would be more difficult. For a marginally interpretable GLMM, the average

expected seizure count across all subjects in the population with a particular set of covariates

is simply E(Y |β∗,α) = exp(xTβ∗), whereas for a conventional GLMM, the marginal mean

is E(Y |β,α) =
∫

exp(xTβ + dTu)fU(u)du. Note that the expression for the marginal mean

in the marginally interpretable model does not functionally depend on the random effects

distribution while the same expression for the conventional GLMM does. Consequently,

the marginally interpretable GLMM should be less sensitive to perturbations of the random

effects distribution, and estimates of the fixed effects parameters based on the marginally

interpretable model should be more stable across different samples from the same population.

S5.1 Markov chain Monte Carlo for the epilepsy data

We sample from the target posterior via MCMC by iteratively updating the parameter vector

θ = (β,α,γ, δ)T , where β is the vector of fixed effects parameters, α=(σ2, τ 2)T includes the

parameters characterizing the random effects distribution, γ = (γ1, . . . , γ59)
T includes the 59

latent variables associated with the subject random effect, and δ = (δ1,1, . . . , δ59,4)
T includes

the 236 latent variables associated with the visit random effect. Our target posterior is

πθ|Y(θ|Y) ∝ fY|θ(Y|β,α,γ, δ)fγ(γ|σ2)fδ(δ|τ 2)πβ(β)πσ(σ2)πτ (τ
2),

where fY|θ(Y|β,α,γ, δ) is a product of Poisson densities given by

fY|θ(Y|β,α,γ, δ) =
59∏
i=1

4∏
j=1

fY |θ(Yij|β, σ2, τ 2, γi, δij)

=
59∏
i=1

4∏
j=1

1

Yij!
e−
(
xTijβ+γi+δij−

σ2

2
− τ

2

2

)(
xTijβ + γi + δij −

σ2

2
− τ 2

2

)Yij
,
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fγ(γ|σ2) is a product of normal densities given by

fγ(γ|σ2) =
59∏
i=1

fγ(γi|σ2) =
59∏
i=1

1√
2πσ2

e−
1

2σ2
γ2i ,

fδ(δ|τ 2) is a product of normal densities given by

fδ(δ|τ 2) =
59∏
i=1

4∏
j=1

fδ(δij|τ 2) =
59∏
i=1

4∏
j=1

1√
2πτ 2

e−
1

2τ2
δ2ij ,

and πβ, πσ, and πτ are the prior densities for β, σ2, and τ 2, respectively.

A standard approach for sampling from this posterior involves using Metropolis steps to

iteratively produce draws from the full conditional distributions of the unknown parameters.

The conditional posterior of α = (σ2, τ 2)T given β, γ, δ, and Y is proportional to

fY|θ(Y|β,α,γ, δ)fγ(γ|σ2)fδ(δ|τ 2)πσ(σ2)πτ (τ
2),

and the conditional posterior of β given α, γ, δ, and Y is proportional to

fY|θ(Y|β,α,γ, δ)πβ(β).

Further, for each i = 1, . . . , 59, if we define γ−i as all elements of γ except γi, then the

conditional posterior of γi given β, α, γ−i, δ, and Y is proportional to

fγ(γi|σ2)
4∏
j=1

fY |θ(Yij|β, σ2, τ 2, γi, δij),

Since the γi are conditionally independent, γ−i does not enter this expression for the full

conditional of γi. Finally, for each i = 1, . . . , 59 and j = 1, 2, 3, 4 the conditional posterior

of δij given β, α, γ, δ−(ij), and Y is proportional to

fY |θ(Yij|β, σ2, τ 2, γi, δij)fδ(δij|τ 2),

where δ−(ij) represents all elements of δ except δij. Since the δij are conditionally indepen-

dent, δ−(ij) does not enter this expression for the full conditional of δij. These full conditional

distributions lead naturally to the MCMC algorithm on the next page:
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Basic MCMC Algorithm

1. Propose αprop given β(t), γ(t), and δ(t). With probability

min

(
1,
fY|θ(Y|β(t),αprop,γ(t), δ(t))fγ(γ(t)|σ2prop)fδ(δ(t)|τ2prop)πσ(σ2prop)πτ (τ2prop)

fY|θ(Y|β(t),α(t),γ(t), δ(t))fγ(γ(t)|σ2(t))fδ(δ
(t)|τ2(t))πσ(σ2(t))πτ (τ2(t))

)

set α(t+1) = αprop. Otherwise, set α(t+1) = α(t);

2. Propose βprop given α(t+1),γ(t), δ(t). With probability

min

(
1,
fY|θ(Y|βprop,α(t+1),γ(t), δ(t))πβ(βprop)

fY|θ(Y|β(t),α(t+1),γ(t), δ(t))πβ(β(t))

)
set β(t+1) = βprop. Otherwise, set β(t+1) = β(t);

3. For i = 1, . . . , 59, propose γpropi given β(t+1), α(t+1), and δ(t). With probability

min

(
1,
fγ(γ

prop
i |σ2

(t+1))
∏4

j=1 fY |θ(Yij|β
(t+1),α(t+1), γpropi , δ

(t)
ij )

fγ(γ
(t)
i |σ2

(t+1))
∏4

j=1 fY |θ(Yij|β
(t+1),α(t+1), γ

(t)
i , δ

(t)
ij )

)

set γ
(t+1)
i = γpropi . Otherwise, set γ

(t+1)
i = γ

(t)
i ;

4. For i = 1, . . . , 59 and j = 1, 2, 3, 4, propose δpropij given β(t+1), α(t+1), and γ(t+1). With

probability

min

(
1,
fY |θ(Yij|β(t+1),α(t+1), γ

(t+1)
i , δpropij )fδ(δ

prop
ij |τ 2(t+1))

fY |θ(Yij|β(t+1),α(t+1), γ
(t+1)
i , δ

(t)
ij )fδ(δ

(t)
ij |τ 2(t+1))

)

set δ
(t+1)
ij = δpropij . Otherwise, set δ

(t+1)
ij = δ

(t)
ij .

For each step in this algorithm, we propose new values for the parameters given their current

values. The proposed values are random draws from the following distributions:

βprop ∼ N6(β
(t),V);

log(σ2
prop) ∼ N

(
log(σ2

(t)), 0.16
)
; log(τ 2prop) ∼ N

(
log(τ 2(t)), 0.0625

)
;

γpropi ∼ N(γ
(t)
i , 0.25); δpropij ∼ N(δ

(t)
ij , 0.25).
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The covariance matrix V for proposing βprop is calculated using the weight matrix obtained

from fitting an analogous fixed effects model with iteratively reweighted least squares. Specif-

ically,

V =



0.1735 −0.0061 0.0068 −0.0041 −0.0476 −0.0007

−0.0061 0.0010 −0.0002 0.0001 0.0011 0.0000

0.0068 −0.0002 0.0061 −0.0024 −0.0019 0.0000

−0.0041 0.0001 −0.0024 0.0010 0.0012 0.0000

−0.0476 0.0011 −0.0019 0.0012 0.0136 0.0000

−0.0007 0.0000 0.0000 0.0000 0.0000 0.0030


.

Since our model includes 295 latent variables, this basic MCMC algorithm is plagued by

the issues with slow mixing discussed in Section 5.3. We ran this algorithm for 2,100,000

steps, discarding the first 100,000 steps as burn-in. Only 12.9% of the proposals for β were

accepted, and there is a high degree of autocorrelation in the Markov chains for the fixed

effects parameters. Autocorrelation plots for β∗0 , . . . , β
∗
5 are shown in Figure S4. To address

this problem, we simultaneously propose γprop and δprop to be consistent with each proposed

βprop. We define our proposals for the random effects in (S3) and (S4).

The simultaneous proposal of the fixed and random effects has no net impact on the likeli-

hood. The conditional density of Yij given µij is Poisson(µij), where

µij = E(Yij|γi, δij) = exp(xTijβ + γi + δij + a).

Further, xi,1 = xi,2 = xi,3 because only the fourth-visit indicator varies within a subject.

Defining γpropi and δpropij as in (S3) and (S4), for j = 1, 2, 3

xTijβ
prop + γpropi + δpropij + a

= xTijβ
prop + {γ(t)i + xTij(β

(t) − β∗)}+ δ
(t)
ij + a

= xTijβ
prop − xTijβ

prop + xTijβ
(t) + γ

(t)
i + δ

(t)
ij + a

= xTijβ
(t) + γ

(t)
i + δ

(t)
ij + a,
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Figure S4: Autocorrelation plots for β∗0 , . . . , β
∗
5 for a basic MCMC algorithm for the epileptic

seizures data.
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Figure S5: Autocorrelation plots for β∗0 , . . . , β
∗
5 for the modified MCMC algorithm for the

epileptic seizures data.

20



and for j = 4

xTijβ
prop + γpropi + δpropij + a

= xTijβ
prop + {γ(t)i + xTi,1(β

(t) − βprop)}+ {δ(t)ij + (xTij − xTi,1)(β
(t) − βprop)}+ a

= xTijβ
prop + xTi,1(β

(t) − βprop)− xTi,1(β
(t) − βprop) + xTij(β

(t) − βprop) + γ
(t)
i + δ

(t)
ij + a

= xTijβ
prop − xTijβ

prop + xTijβ
(t) + γ

(t)
i + δ

(t)
ij + a

= xTijβ
(t) + γ

(t)
i + δ

(t)
ij + a.

Consequently, the conditional mean E(Yij|β, γi, δij) is the same for both the current state

and the proposed state. In turn, the conditional density fY|θ is also the same for both states.

Noting that the conditional posterior of (β,γ, δ)T given α and Y is proportional to

fY|θ(Y|β,α,γ, δ)fγ(γ|σ2)fδ(δ|τ 2)πβ(β),

the acceptance probability for (βprop,γprop, δprop)T depends entirely on πβ, fγ , and fδ because

fY|θ(Y|βprop,α(t+1),γprop, δprop) = fY|θ(Y|β(t),α(t+1),γ(t), δ(t)). This joint proposal scheme

leads to the modified MCMC algorithm on the next page:
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Modified MCMC Algorithm

1. Propose αprop given β(t), γ(t), and δ(t). With probability

min

(
1,
fY|θ(Y|β(t),αprop,γ(t), δ(t))fγ(γ(t)|σ2prop)fδ(δ(t)|τ2prop)πσ(σ2prop)πτ (τ2prop)

fY|θ(Y|β(t),α(t),γ(t), δ(t))fγ(γ(t)|σ2(t))fδ(δ
(t)|τ2(t))πσ(σ2(t))πτ (τ2(t))

)

set α(t+1) = αprop. Else, set α(t+1) = α(t);

2. Propose (βprop,γprop, δprop)T given α(t+1), with βprop being drawn from a proposal

distribution and γprop and δprop defined as in (S3) and (S4). With probability

min

(
1,
fγ(γprop|σ2

(t+1))fδ(δ
prop|τ 2(t+1))πβ(βprop)

fγ(γ(t)|σ2
(t+1))fδ(δ

(t)|τ 2(t+1))πβ(β(t))

)

set β(t+1) = βprop, γ ′ = γprop, and δ′ = δprop. Else, set β(t+1) = β(t), γ ′ = γ(t), and

δ′=δ(t);

3. For i = 1, . . . , 59, propose γpropi given β(t+1), α(t+1), and δ′. With probability

min

(
1,
fγ(γ

prop
i |σ2

(t+1))
∏4

j=1 fY |θ(Yij|β
(t+1),α(t+1), γpropi , δ′ij)

fγ(γ′i|σ2
(t+1))

∏4
j=1 fY |θ(Yij|β

(t+1),α(t+1), γ′i, δ
′
ij)

)

set γ
(t+1)
i = γpropi . Else, set γ

(t+1)
i = γ ′i;

4. For i = 1, . . . , 59 and j = 1, 2, 3, 4, propose δpropij given β(t+1), α(t+1), and γ(t+1). With

probability

min

(
1,
fY |θ(Yij|β(t+1),α(t+1), γ

(t+1)
i , δpropij )fδ(δ

prop
ij |τ 2(t+1))

fY |θ(Yij|β(t+1),α(t+1), γ
(t+1)
i , δ′ij)fδ(δ

′
ij|τ 2(t+1))

)

set δ
(t+1)
ij = δpropij . Else, set δ

(t+1)
ij = δ′ij.

The key difference between this modified algorithm and the basic algorithm is in Step 2.

Here, in addition to updating β(t) to β(t+1), we update γ(t) and δ(t) to the intermediate

states γ ′ and δ′. Steps 3 and 4 then update γ ′ and δ′ to γ(t+1) and δ(t+1) in a manner similar

to Steps 3 and 4 in the basic MCMC algorithm.
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Table S2: Integrated autocorrelation times (before thinning) for the fixed effects parameters

in the marginally interpretable model for the epileptic seizures data for both the basic MCMC

algorithm and the modified MCMC algorithm

Parameter Basic MCMC Modified MCMC Ratio

β∗0 205.3 62.8 3.27

β∗1 642.7 161.9 3.97

β∗2 355.2 105.0 3.38

β∗3 565.6 168.0 3.37

β∗4 204.2 65.6 3.11

β∗5 71.5 51.0 1.40

Using the modified MCMC algorithm instead of the basic MCMC algorithm increases the

acceptance rate for β from 12.9% to 50.7%. It also decreases the integrated autocorrelation

times for the fixed effects parameters, as summarized in Table S2. The integrated autocorre-

lation time of a parameter provides a measure of the average number of iterations required to

obtain approximately independent draws from the posterior distribution of that parameter.

For β∗0 , . . . , β
∗
4 , this quantity is more than three times larger using the basic MCMC algorithm

versus using the modified MCMC algorithm. Thus, the strategy described in Section 5.3 suc-

cessfully reduces the autocorrelation and allows us to obtain a representative sample from

the target posterior with fewer steps of the Markov chain. As further illustration of the im-

proved mixing, Figure S5 (displayed below Figure S4 for comparison) shows autocorrelation

plots for β∗0 , . . . , β
∗
5 using the modified MCMC algorithm. Although some autocorrelation

remains, even at a lag of 200, it is not as strong as the autocorrelation observed in Figure S4

for the basic MCMC algorithm.
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